

LORETO KIRRIBILLI 85 CARABELLA ST KIRRIBILLI 2061

THE HILLS GRAMMAR SCHOOL

TRIAL HSC 1999

MATHEMATICS

3 UNIT

TIME ALLOWED: 2 Hours (plus 5 minutes reading time)

Teacher Responsible:

Mrs B Spencer Mrs S Maxton

INSTRUCTIONS:

- Attempt all questions.
- In every question show all necessary working.
- Silent calculators and approved templates may be used.
- Start each question on a NEW page and hand up your paper in ONE bundle with your name marked on EVERY page.
- All questions are of equal value.

Question 1

Marks

2

- a) Express $\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}} + \frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}}$ in the form of $a\sqrt{5}+b\sqrt{6}$
- b) Show that $\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$
- c) Find the acute angle between the lines 2

$$y = 4x - 2$$
 and $2x + 3y - 9 = 0$

to the nearest minute.

- d) Find the co-ordinates of the point P which divides the interval AB externally in the ratio 3:1. A is (-4,2) and B is (6,5).
- e) (i) What is the maximum value of $5\sin\theta + 12\cos\theta$; and
 - (ii) What is the first positive value of θ for which this maximum occurs.

Question 2

a) Find
$$\int x^2 \sqrt{(x^3 - 9)} dx$$
 using $u = x^3 - 9$

- b) Evaluate $\int_{0}^{\frac{\pi}{12}} \cos^2 x \, dx$. Answer in exact value terms.
- c) Find the term independent of x in the expansion of $(x^2 \frac{1}{x})^{12}$.
- d) The remainder when $x^3 + ax + b$ is divided by (x-2)(x+3) is 2x+1.

 Find a and b.

Question 3			Marks
a)	The points P $(2ap,ap^2)$ and Q $(2aq,aq^2)$ lie on the parabola $x^2 = 4ay$. The angle POQ is 90°. 0 is $(0,0)$. Show that $pq = -4$ and hence find the equation of the locus of M, the midpoint of PQ.		
b)	A projectile is fired from O with a velocity of 20m/s at an angle of 60°. The projectile just clears a wall 25m from the point of projection. How high is the wall? Take $g = 10 \text{m/sec}^2$.		
c)	<i>f(x)</i> =	$=x^3-x^2-x-1$.	
	(i)	Show that the equation $f(x) = 0$ has a root in the interval $1 < x < 2$.	1
	(ii)	Use Newton's method once to find a better approximation for the root, taking x to be 1.5.	3
Que	stion 4		
a)	The area of outes a circular ripple which expands		
	so tha	at $\frac{dr}{dt} = 1.5m/s$. Find the rate at which the area of the circle is	
	increa	using when the radius is 2m. Answer to 4 significant figures.	
b)	A particle moving along the x-axis has a velocity given by $v^2 = 15 - 2x - x^2$.		
	(i)	Show that the centre of the motion is at $x = -1$.	2
	(ii)	Show that $a=-n^2x$ and thus the motion is simple harmonic.	2
	(iii)	Find the amplitude and period of the motion.	2
c)			
	A B	P C D	
Two unequal circles touch at P. APD and BPC are straight lines.			
	(i)	Copy the diagram in a larger scale.	4
	(ii)	Draw the common tangent XPY.	

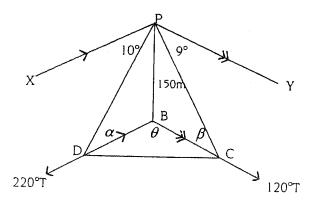
Prove that AB is parallel to CD.

(iii)

Question 5

Marks

4


Use the expansion $(1+x)^n = \sum_{r=0}^n {^nC_r}x^r$ to prove that

$$1 - {}^{n}C_{1} + {}^{n}C_{2} - {}^{n}C_{3} + \dots + (-1)^{n}C_{n} = 0.$$

- b) In how many ways can a committee of 4 people be selected from a group of 10 people if;
 - (i) 2 particular members P and Q are included; 3
 - (ii) 2 particular members P and Q are excluded.
- I participate in a raffle where my chances of winning a prize are one in ten. If I buy a book of 12 tickets, what is the probability of my winning exactly two prizes. Leave answer in index form.

Question 6

a)

A ship is observed from the top of a 150m cliff BP with an angle of depression 9° when the ship is at the point C. Ten minutes later it is seen at D with an angle of depression of 10° . $\angle PDB = \alpha$, $\angle PCB = \beta$ and $\angle DBC = \theta$. BC bears 120° T. BD bears 220° T.

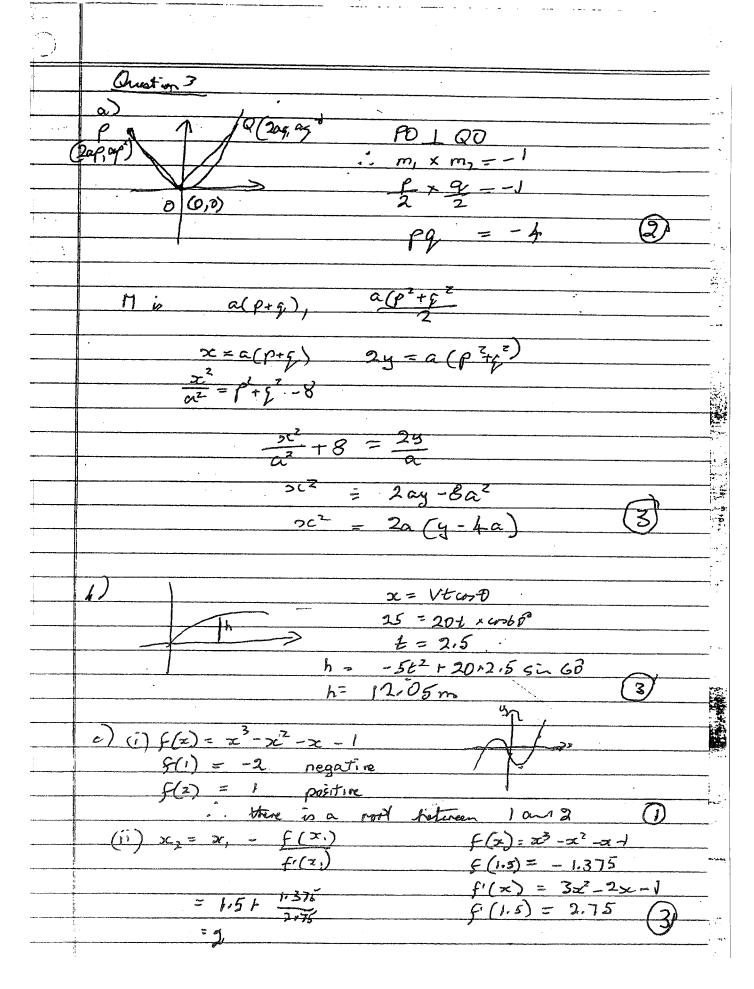
(i) Show that $\alpha = 10^{\circ}$, $\beta = 9^{\circ}$ and $\theta = 100^{\circ}$.

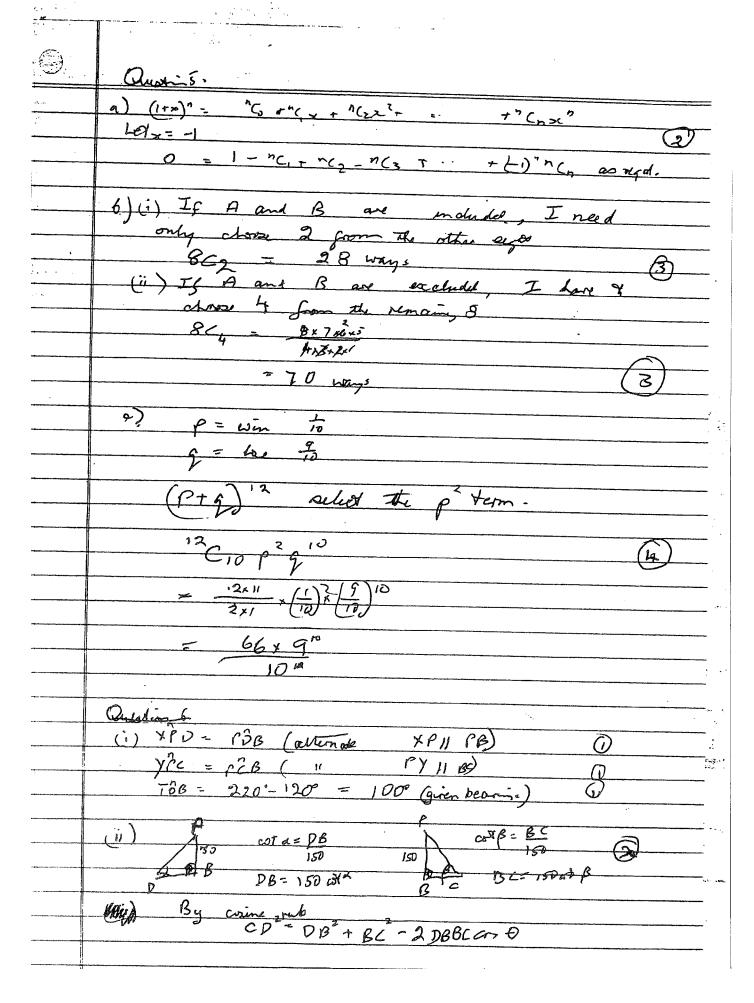
3

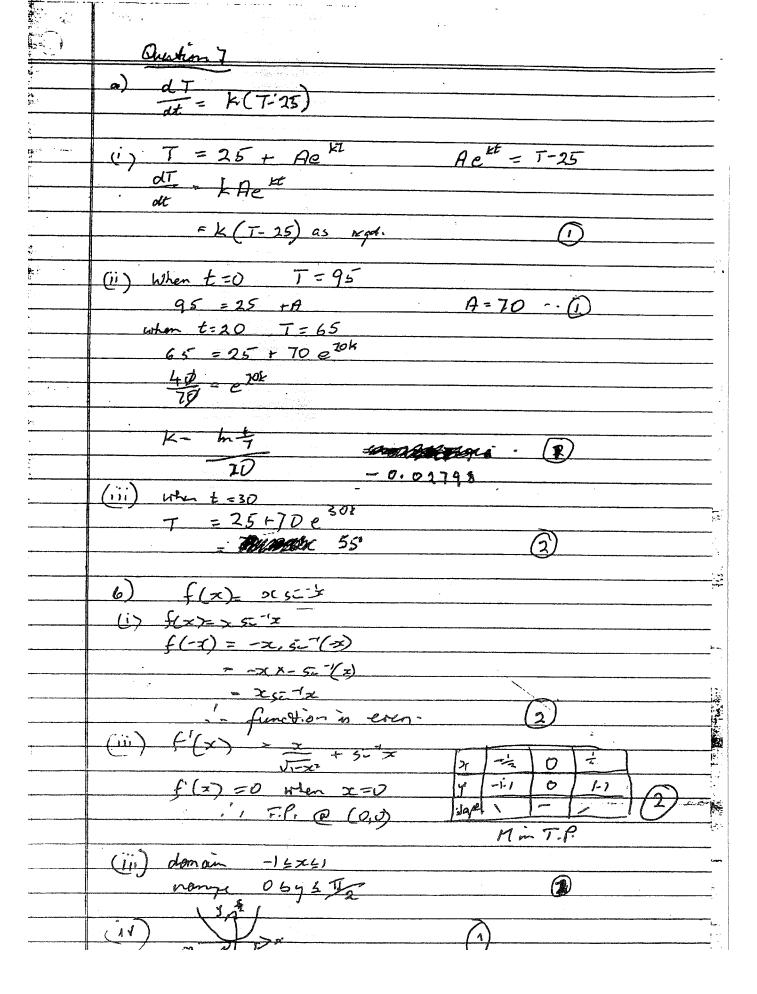
(ii) Show that BD = 150 $\cot \alpha$ and BC = 150 $\cot \beta$ and hence that $CD^2 = 150^2 (\cot^2 \alpha + \cot^2 \beta - 2 \cot \alpha \cot \beta \cos \theta)$.

4

(iii) Find the speed of the ship in km/h to three significant figures.


2


c) Solve for all x, $2\sin^2 x = \sin 2x$. Answer in radian measure.


3

- My loungeroom is kept at a constant temperature of 25°c. A cup of tea left standing in the room cools at a rate proportional to the difference in temperature between the tea and its surroundings so that $\frac{dT}{dt} = k(T 25)$. After 20 minutes the temperature of the tea has dropped from 95°c to 65°c.
 - (i) Show that $T = 25 + Ae^{kt}$ is a solution of $\frac{dT}{dt} = k(T 25)$.
 - (ii) Find the values of A and k.
 - (iii) Find the temperature of the tea after a further 10 minutes.
- b) Consider the function $f(x) = x \sin^{-1} x$.
 - (i) Show that f(x) is an even function.
 - (ii) Find f'(x) and hence the co-ordinates of the only turning point.
 - (iii) Determine the domain and range of f(x).
 - (iv) Sketch f(x).

	Solution. Hills Grammal	:
	Questil 3m 1999	
	Questi-1 3m 1999 a) 1+ J2, I-J2 Trial HSC.	
- 45	VE+J3 VE-J3	
# 15%	5-15-16-16 + 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	
·.	- V8-13+16-16 + V5 + V5-16-16 - (5+15) (5-16)	
	3 275-278	,.
i se	2	
Ta .	= 15-J6 a=1 b=-1	(2)
-	b) n Cr n! n! n! n! n! (r-i)!	
	nc+-1 (n-r): r: (n-r+1)! (r-1)!	
		- F
	(n-r) r! × (n-ri)! (r-i)!	
	= -N-+H on right.	(2)
	77	
	c) $y = 4x - 2$ $m_1 = 4$	<u> </u>
	a) $y=4\pi-2$ $m_1=4$ $2\pi + 3y=9$ $m_2=-\frac{2}{3}$	ė.
		· 1
	$fon \theta = \frac{m_1 - m_2}{1 + m_1 \cdot m_2}$	
		. ; ~ :
<u> </u>	= 4+3	
	14	
	3	
	0 = 70.21'	(2)
	3	
	2	y, de.
	a) A (-4,2) B (6,5) P (15,62)	<u></u>
	1 5 0 10 2	
<u> </u>	e) 5== 0+12 cn0 = 13(===0+1= gn0)	= 67° 23
	= 13 s=(0+a) what 12	

